CodeGRITS: A Research Toolkit for Developer Behavior and Eye
Tracking in IDE

Ningzhi Tang*f, Junwen An'T, Meng Chen', Aakash Bansal®
Yu Huangi, Collin McMillanT, Toby Jia-Jun Lif
{ntang,jan2,mchen24,abansall,cmc,toby.j.li}{@nd.edu,yu.huang@vanderbilt.edu
*University of Notre Dame, Notre Dame, IN, USA
*Vanderbilt University, Nashville, TN, USA

ABSTRACT

Traditional methodologies for exploring programmers’ behaviors
have primarily focused on capturing their actions within the In-
tegrated Development Environment (IDE), offering limited view
into their cognitive processes. Recent emergent work started us-
ing eye-tracking techniques in software engineering (SE) research.
However, the lack of tools specifically designed for coordinated
data collection poses technical barriers and requires significant
effort from researchers who wish to combine these two comple-
mentary approaches. To address this gap, we present CodeGRITS,
a plugin specifically designed for SE researchers. CodeGRITS is
built on top of Intelli]’s SDK, with wide compatibility with the
entire family of JetBrains IDEs to track developers’ IDE interac-
tions and eye gaze data. CodeGRITS also features various practical
features for SE research (e.g., activity labeling) and a real-time API
that provides interoperability for integration with other research
instruments and developer tools. The demo video is available at
https://youtu.be/d-YsJfW2NMIL

KEYWORDS
IDE Extension/Plugin, Developer Behavior Analysis, Eye Tracking

1 INTRODUCTION

Tracking developers’ programming behavior provides valuable in-
sights into how they engage in the software development pro-
cess [9, 14, 19], and helps evaluate and improve the usability of pro-
gramming language features and tools in software engineering (SE)
research [11, 26]. Traditional approaches focus mainly on tracking
developers’ interactions with the integrated development environ-
ment (IDE), such as keystrokes, code changes, and IDE-specific
commands [11, 27]. However, while these approaches can identify
“what a programmer did,” they are limited in explaining “why they
did it” Previous research relies mainly on surveys and interviews
to understand what developers were thinking and why they made

"Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04...$15.00
https://doi.org/10.1145/3639478.3640037

certain decisions [15]. However, these approaches are susceptible to
recall bias and may not capture developers’ self-consciousness [7].

To bridge this gap, in recent years, researchers have started in-
vestigating the use of eye tracking to understand the cognitive
processes of developers during software development such as pro-
gram comprehension [21], debugging [25], and code review [3].
Eye tracking involves recording the developers’ eye gaze data, i.e.,
the locations on the screen that the developers are looking at, while
programming [23]. According to the “eye-mind hypothesis,” the eye
fixations (i.e., spatially stable gazes that last for 200 to 300 ms [22])
and other eye movements (e.g., saccades, blinks) are closely related
to visual attention of users and the amount of cognitive process-
ing [13]. This hypothesis has been validated in previous studies in
psychology [16] and human-computer interaction [6, 24]. Further-
more, by analyzing eye gaze data, researchers can facilitate down-
stream SE tasks, such as automated code summarization [1, 17].

Therefore, it becomes crucial for a tool that, in addition to track-
ing programmers’ IDE interactions, also tracks their eye gaze data
to understand their cognitive processes. Some tools exist to track
programmers’ eye movements [5, 12] or capture their interactions
with the IDE [11, 19, 27]. Notably, iTrace [12], focuses on tracking
eye movement data and has been implemented as plugins in several
popular IDEs, e.g., Visual Studio and Eclipse. But support for the
JetBrains IDEs (e.g., Inteii] IDEA, PyCharm), which have increased
popularities in the industry and community'?, is lacking. Moreover,
existing tools lack support to simultaneously record multiple forms
of behavioral data. This inability hampers researchers’ ability to
conduct comprehensive studies that integrate various aspects of
programmer behavior, such as eye fixations and IDE interactions,
into a unified study.

In this paper, we present CodeGRITS?, a plugin for JetBrains
IDEs (e.g., Intelli] IDEA, PyCharm, etc.) that aims to address the
challenges discussed above. CodeGRITS is built on top of IntelliJ
Platform Plugin SDK and uses the Tobii Pro SDK to record the eye
gaze data, which could track the developers’ IDE interactions and
eye gaze data simultaneously. Similar to iTrace, CodeGRITS could
map the eye gaze data to the specific locations (i.e., line, column) and
tokens in the source code. In addition, CodeGRITS also performs an
upward traversal of the abstract syntax tree (AST) for each gaze to
understand its hierarchical structure. All collected data are stored
locally in comprehensible formats that allow for further analysis.

Compared to previous tools like iTrace, CodeGRITS provides
several extra features that cater to the specific needs of empirical

Lhttps://survey.stackoverflow.co/2022
Zhttps://www.jetbrains.com/Ip/devecosystem-2022/java/
3CodeGRITS stands for Gaze Recording & IDE Tracking System

https://youtu.be/d-YsJfW2NMI
https://doi.org/10.1145/3639478.3640037

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

Pause/Resume Tracking

Configuration Trackers

Data Output

g IDE Tracker Cotflignsole
rchive

Functionnalities

{@} Settings

Stop
Pre-set Labels 0 Eye Tracker - Tracking Data
Tracking| xMmL.

-
o Start Trackin, Screen Screen
r <>—g> (_..) Recorder @ Recording

User

- Realtime Data APl

___________ R

R Consumer

Figure 1: Overview of CodeGRITS.

SE researchers. First, a built-in screen recorder provides additional
details about the developers’ programming behavior and could be
used to validate the eye tracking data. Second, CodeGRITS offers the
functionality to add customizable labels pre-set by the researchers
during tracking, to mark the developers’ activities (e.g., finished de-
bugging a bug). Finally, CodeGRITS provides a real-time data access
API that allows integration with other research instruments and
developer tools. The setup process of CodeGRITS is easy; it only re-
quires installation from disk, configuring the Python environment,
and connecting the eye-tracking device.
To summarize, our paper makes the following contributions:

(1) CodeGRITS, a new open-source plugin that tracks the devel-
opers’ IDE interactions and eye-tracking data simultaneously
during development workflows.

(2) CodeGRITS implements several extra features, such as a
screen recorder, customizable labels, and a real-time data
API, to fulfill the needs of empirical SE researchers.

(3) CodeGRITS provides wide compatibility with different Jet-
Brains IDEs to map gazes to source code tokens for all IDE-
supported programming languages.

2 OVERVIEW

Figure 1 illustrates the architecture of CodeGRITS, which consists
of three components: (1) Configuration, (2) Trackers, and (3) Data
Output. A typical workflow begins with the user configuring the
settings in the Configuration section, followed by the activation
of trackers to monitor specific interactions, e.g., IDE interactions
and eye movements. Finally, the collected data is processed and
presented in different output formats.

The documentation of CodeGRITS is available at https://codegrits.

github.io/CodeGRITS/, which includes the usage guide, the down-
load link, and the data format. The source code is available at
https://github.com/codegrits/CodeGRITS.

2.1 Configuration

CodeGRITS offers a GUI-based Configuration panel, as shown in
Figure 2. Users could set the following three types of configurations:
Functionality, Settings, and Preset Labels.

2.1.1 Functionalities. Users can select the trackers they want to
use, including IDE Tracker, Eye Tracker, and Screen Recorder. Our
plugin currently supports Tobii Pro eye-tracking devices due to

Tang et al.

B codeGRITS Configuration X

Functionalities
DE Tracking Eye Tracking Screen Recording

Settings
Python Interpreter Path

DAProgramData\Anaconda3\python.exe
Data Output Path
Select Data Output Folder (Default: Project Root)
Sample Frequency Eye Tracker Device
300 v Tobii Pro Fusion v
Preset Labels
Fixed Bug 1.1 -

Fixed Bug 1.2 -

+
o T
Figure 2: Configuration panel of CodeGRITS.

its popularity in the eye-tracking community. If a compatible eye-
tracking device is not available, CodeGRITS would use the mouse
cursor as a substitute for eye gaze data.

2.1.2 Settings. Users can configure the following settings: (1) The
Python interpreter path that is used for Eye Tracker (discussed
in Section 3.2); (2) The output directory for the collected data; (3)
The sample frequency of Eye Tracker. The range depends on the
eye-tracking device; (4) The eye-tracking device to use. The mouse
is also available as a substitute.

2.1.3 Preset Labels. Users are able to pre-set some labels here
which could be used to mark the developers’ semantic activities
that cannot be captured by explicit IDE interactions. For example,
when users intend to mark the time when participating in a research
study on debugging, they could pre-set a label named “Bug Fixed 1.1”
or “Bug Fixed 1.2” and perform “Add Label” action during tracking
to mark the time when the bug is fixed. The label is also recorded
in the output data via IDE Tracker.

2.2 Trackers

Considering the needs of different users, CodeGRITS comes with
three trackers for various scenarios: (1) IDE Tracker, (2) Eye Tracker,
and (3) Screen Recorder. After configuration, users can start the
tracking process by clicking the “Start Tracking” button. The track-
ing process could be stopped by clicking the “Stop Tracking”. Users
could also pause/resume the tracking process.

2.2.1 IDE Tracker. IDE Tracker could track a wide range of IDE in-
teractions. A sample of them is shown in Listing 1. <actions> part
consists of IDE-specific features. These include clipboard features
like EditorPaste, EditorCut; run features like RunClass, Stop,
ToggleLineBreakpoint, Debug; navigation features like Find,
GoToDeclaration, ShowIntentionActions; and much more ad-
vanced IDE features like CompareTwoFiles, ReformatCode.

In addition to IDE-specific features, IDE Tracker also tracks file
system operations like FileOpened, SelectionChanged; character
typing events; mouse events like MouseMoved, MousePressed; text
fragment selection events; caret position events; and visible area

https://codegrits.github.io/CodeGRITS/
https://codegrits.github.io/CodeGRITS/
https://github.com/codegrits/CodeGRITS

CodeGRITS: A Research Toolkit for Developer Behavior and Eye Tracking in IDE

events. Detailed information is shown in CodeGRITS Documenta-
tion. All tracked data are saved in an XML file with attributes (e.g.,
timestamp, file path) for further analysis. A real-time archive mech-
anism is also implemented to archive the whole code files when
they are changed, and the console output during development.

Listing 1: An example of IDE tracking data.

<ide_tracking>
<actions>

<action id="RunClass" path="/src/Main. java"
timestamp="1696214496053"/>

<action id="GotoDeclaration" path="/src/Main. java
timestamp="1696214513473"/>

<action id="NewClass" path="/src"
timestamp="1696217116236"/>

<action id="RenameElement" path="/src/ABC. java"
timestamp="1696217122074"/>

</actions>
<typings>

<typing character="S" path="/src/Main. java" line="3"

column="8" timestamp="1696216429855"/>
</typings>
<files>
<file id="fileClosed" path="/src/Main. java"
timestamp="1696216679318"/>
</files>
</ide_tracking>

2.2.2 Eye Tracker. The workflow of Eye Tracker is divided into
three steps: (1) connect to the eye-tracking device and receive raw
data, which includes the coordinates of the eye gaze points, pupil
diameters of both eyes and their validity; (2) map the coordinates
of raw gazes within the text editor to specific locations in the code
(i.e., file path, line and column number); (3) infer the source code
tokens that each gaze point is focusing on, as well as perform a
bottom-up process to traverse the AST structures of the tokens. An
example of the gaze data is shown in Listing 2.

Listing 2: An example of tracked eye gaze data.

<gaze timestamp="1696224370377">
<left_eye gaze_point_x="0.3255" gaze_point_y="0.1259"
gaze_validity="1.0" pupil_diameter="2.4835"
pupil_validity="1.0"/>
<right_eye gaze_point_x="0.3311" gaze_point_y="0.1263"
gaze_validity="1.0" pupil_diameter="2.7188"
pupil_validity="1.0"/>
<location column="9" line="1" path="/src/Main. java"
x="500" y="108"/>
<ast_structure token="public" type="PUBLIC_KEYWORD">
<level end="1:10" start="1:4"
tag="PsiKeyword:public"/>
<level end="1:17" start="1:4"
tag="PsiModifierList:public_static"/>
<level end="3:5" start="1:4" tag="PsiMethod:main"/>
<level end="4:1" start="0:0" tag="PsiClass:Main"/>
</ast_structure>

</gaze>

2.2.3 Screen Recorder. One feature of CodeGRITS is the ability
to record the screen during the tracking process. Screen Recorder

ICSE-Companion 24, April 14-20, 2024, Lisbon, Portugal

Eye Tracker Data o —

Timestamp: 1697425146124, Line: 29, Column: 20, Token: printin
Timestamp: 1697425146158, Line: 29, Column: 19, Token: printin
Timestamp: 1697425146191, Line: 29, Column: 19, Token: println
Timestamp: 1697425146226, Line: 29, Column: 19, Token: printin
Timestamp: 1697425146261, Line: 29, Column: 19, Token: printin

IDE Tracker Data o -

Timestamp: 1697424912245, Event: selectionChanged
Timestamp: 1697424928215, Event: caretPositionChanged
Timestamp: 1697424928226, Event: selectionChanged
Timestamp: 1697424928389, Event: mouseReleased
Timestamp: 1697424928393, Event: mouseClicked

Figure 3: Real-time data output panel.

captures everything on the screen and saves it as a video. The plugin
records each frame’s timestamp, which can be used to synchronize
the recording with other tracking data to facilitate analysis.

2.24 Real-time Data API. CodeGRITS provides an API for access-
ing IDE Tracker and Eye Tracker data in real-time, opening possibil-
ities for researchers to integrate CodeGRITS into a multi-step data
collection pipeline or develop applications using the post-processed
data of CodeGRITS, such as real-time visualization. Figure 3 illus-
trates a working example of the usage of real-time data API, which
outputs formatted tracked data in real-time into the IDE side panel.

3 IMPLEMENTATION

CodeGRITS is designed as a plugin for JetBrains IDEs due to their
extensive popularity in the developer community. Our implemen-
tation is based on the official IntelliJ Platform Plugin SDK*, as it
allows us to leverage the extensibility of Intelli] Platform with built-
in APIs. The SDK is also compatible with all JetBrains IDEs such as
Intelli] IDEA, PyCharm, and CLion.

Following the guidelines of IntelliJ Platform Plugin SDK, every
user-initiated action (i.e., start/stop tracking, pause/resume track-
ing, add label, and open configuration panel) is implemented as
Java classes that extend the abstract AnAction class, so that they
are added to IDE menus and toolbars.Trackers are passed into ac-
tion classes as member variables, whose states are controlled via
the overridden actionPerformed method. For instance, when the
user clicks on “Start Tracking”, actionPerformed is invoked. The
method then loads the user’s configuration to properly instantiate
the enabled trackers and signal their activation.

3.1 IDE Tracker

IDE Tracker is implemented by registering listeners in the IntelliJ
Platform such as EditorMouselListener andSelectionListener.
Each time a specific event is triggered, the corresponding listener
would be notified and the event would be recorded in the output
data. The most important listener is AnActionListener, which
tracks IDE-specific features as shown in the <actions> part of IDE
tracking data (Listing 1). The real-time archive mechanism of IDE
Tracker is implemented via DocumentListener interface.

3.2 Eye Tracker

We use the Tobii Pro SDK for Python® to collect eye tracking data
and use Java ProcessBuilder to call the Python script to collect
data. The Python interpreter path is specified in the configuration.

“https://plugins.jetbrains.com/docs/intellij/welcome.html
Shttps://developer.tobiipro.com/python/python-getting-started.html

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

After receiving raw data from the eye-tracking device, Eye Tracker
in CodeGRITS would first compute the coordinates of each gaze
relative to the top-left corner of the visible code editor. Then, the
coordinates would be mapped to the specific locations in the code
file (i.e., line and column) via xyToLogicalPosition() method of
the Editor interface of IntelliJ Platform Plugin SDK. Next, the con-
crete source code tokens that the gaze points focusing on would be
computed by findElementAt () method of the PsiFile interface.
PSI stands for Program Structure Interface®, which represents the
underlying model of JetBrains IDEs to parse the AST of the code.
Finally, Eye Tracker would iteratively use the getParent () method
of the PsiElement interface to perform bottom-up traversal of AST
structures of the tokens.

3.3 Screen Recorder

We use the FFmpegFrameGrabber class in JavaCV’, a wrapper for
commonly used libraries by researchers in the field of computer
vision, to capture screenshots between fixed time intervals. Screen-
shots are encoded into a video file using the FrameRecorder class.

3.4 Real-time Data API

The core of the API is Java’s Consumer interface, which enables flex-
ibility and extensibility. The user can implement a custom function
that takes an Element object in package org.w3c.dom as input and
void as output. Whenever a new XML element is created (e.g., IDE
Tracker detected an IDE interaction), the element will be passed
into the user-created function for processing. Its full documentation
and usage are elaborated on CodeGRITS Documentation.

3.5 Support for Multiple IDEs and Languages

CodeGRITS supports major JetBrains IDEs, e.g., Intelli] IDEA, Py-
Charm, WebStorm. Its Eye Tracker can compute the tokens and
perform upward traversal of AST of all programming languages
supported by each IDE. For example, in Intelli] IDEA, the Java and
Kotlin IDE, Eye Tracker could understand the AST of Java, Kotlin,
Groovy, etc, while in PyCharm, the Python IDE, it could understand
the AST of Python. Besides, some languages are supported by mul-
tiple IDEs, such as HTML, CSS, JavaScript, XML, etc. CodeGRITS
can traverse the AST structure for the gaze on all of them.

4 USE CASES
4.1 Understanding Developer Behavior and
Cognition

The data collected by CodeGRITS provide a fine-grained source
of information for quantitative analysis of programmers’ software
development process. For instance, in a previous study [25], we used
an earlier version of CodeGRITS to collect data from the process of
9 programmers to debug Al-generated code. Each data collection
session lasted approximately 120 minutes, and the data was used
to understand their behavior and cognition patterns.

CodeGRITS could also be used by SE researchers to collect data
for their studies in a wide range of tasks e.g., program comprehen-
sion, software traceability, and code review.

Shttps://plugins.jetbrains.com/docs/intellij/psi.html
"https://github.com/bytedeco/javacv

Tang et al.

4.2 Context-aware Programming Support

Context-aware computing is a paradigm in which the behavior of
the application is adapted to the current context of the user [8].
CodeGRITS tracks the developers’ interactions with the IDE and
the code, as well as the developers’ eye gaze data, which form a rich
source of context information about them—the developers’ current
behavior focus, and cognitive load. Inferring the developers’ states
from the tracked data lays the foundation for providing personal-
ized programming support, potentially improving productivity and
reducing their cognitive load.

Furthermore, the reduced cost and improved user-friendliness
of eye-tracking devices increase the versatility of CodeGRITS, as it
can easily be integrated into nonlaboratory settings, i.e., a natural
development environment, and facilitate various usages.

5 LIMITATION AND FUTURE WORK

There are four main limitations of CodeGRITS. First, CodeGRITS
currently only supports Tobii eye-tracking devices. However, the
source code of CodeGRITS is provided for the community to expand
its hardware support. We also plan to expand its support for other
eye-tracking hardware SDKs in the future, too.

Secondly, CodeGRITS only captures the developer behavior and
eye gaze data within the IDE, and cannot track outside activities
such as browsing websites, reading documents, or using GitHub.
We use Screen Recorder as a compensation to fill this gap.

Thirdly, Eye Tracker of CodeGRITS can only parse content
within the editor to obtain tokens or AST structures, and cannot
track other parts of the IDE, such as the menu bar or console.

Finally, CodeGRITS’s tracking of the software development pro-
cess focuses on objective syntactic information. It cannot interpret
the subjective semantic aspects, such as finishing fixing a bug or
completing writing a function. We developed the “Add Label” fea-
ture for CodeGRITS to complement this. In future work, we will
explore methods to model these semantic aspects.

6 RELATED WORK

There exist several tools for collecting eye-tracking data in devel-
opment environments [5, 12, 20], as well as eye-tracking data post-
processing tools [2] and eye movement visualization tools [4, 18].
In particular, iTrace [12, 20] served as a fundamental infrastructure
in the field, with researchers introducing several works [2, 4, 10]
that extends iTrace’s functionalities. Researchers also introduced
several IDE plugins to capture IDE interactions [11, 27] as well as
IDE interaction visualization tools [19].

Compared with the previous work described above, CodeGRITS
exhibits advances by combining several behavior trackers and pro-
vides additional features to support future research.

7 CONCLUSION

In this paper, we present CodeGRITS, a plugin that uses IDE track-
ing, eye tracking, and screen recording methods to collect data
from the software development process of developers. CodeGRITS
is compatible with most JetBrains IDEs and all their supported pro-
gramming languages. CodeGRITS also provides several additional
features to facilitate the empirical needs of researchers.

CodeGRITS: A Research Toolkit for Developer Behavior and Eye Tracking in IDE

8

ACKNOWLEDGEMENT

This research was supported in part by a Google Cloud Research
Credit Award, a Google Research Scholar Award, and NSF grants
CCF-2211428 and CCF-2100035. Any opinions, findings, or recom-
mendations expressed here are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

(1]

[2

—

[10

[11]

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19

[20

Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling
Human Attention from Eye Movements for Neural Source Code Summarization.
ETRA (2023).

Joshua Behler, Praxis Weston, Drew T. Guarnera, Bonita Sharif, and Jonathan 1.
Maletic. 2023. ITrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data of
Software Engineering Studies. In Proceedings of the 45th International Conference
on Software Engineering: Companion Proceedings.

Ian Bertram, Jack Hong, Yu Huang, Westley Weimer, and Zohreh Sharafi. 2020.
Trustworthiness perceptions in code review: An eye-tracking study. In Proceed-
ings of the 14th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 1-6.

Benjamin Clark and Bonita Sharif. 2017. iTraceVis: Visualizing Eye Movement
Data Within Eclipse. In 2017 IEEE Working Conference on Software Visualization
(VISSOFT). 22-32.

Andreas Costi, Marios Belk, Christos Fidas, Argyris Constantinides, and Andreas
Pitsillides. 2020. CogniKit: An Extensible Tool for Human Cognitive Modeling
Based on Eye Gaze Analysis. In Proceedings of the 25th International Conference
on Intelligent User Interfaces Companion.

Daniel Kyle Davis and Feng Zhu. 2022. Analysis of software developers’ cod-
ing behavior: A survey of visualization analysis techniques using eye trackers.
Computers in Human Behavior Reports (2022).

Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang, Brad A.
Myers, and Joshua Sunshine. 2023. What’s (Not) Working in Programmer User
Studies? ACM Trans. Softw. Eng. Methodol. (2023).

Anind K Dey. 2001. Understanding and using context. Personal and ubiquitous
computing 5 (2001), 4-7.

Gabriele Di Rosa, Andrea Mocci, and Marco D’Ambros. 2020. Visualizing In-
teraction Data Inside Outside the IDE to Characterize Developer Productiv-
ity. In 2020 Working Conference on Software Visualization (VISSOFT). 38-48.
https://doi.org/10.1109/VISSOFT51673.2020.00009

Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S. Peterson,
Venera Arnaoudova, Bonita Sharif, and Jonathan Maletic. 2021. gazel: Supporting
Source Code Edits in Eye-Tracking Studies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
Zhongxian Gu, Drew Schleck, Earl T. Barr, and Zhendong Su. 2014. Capturing
and Exploiting IDE Interactions. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2014). 83-94.

Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic, and
Bonita Sharif. 2018. ITrace: Eye Tracking Infrastructure for Development Envi-
ronments. In ETRA’ 18.

Marcel Adam Just and Patricia A Carpenter. 1976. Eye fixations and cognitive
processes. Cognitive psychology 8, 4 (1976), 441-480.

Roberto Minelli, Andrea Mocci and, and Michele Lanza. 2015. I Know What You
Did Last Summer: An Investigation of How Developers Spend Their Time. In Pro-
ceedings of the 2015 IEEE 23rd International Conference on Program Comprehension
(ICPC °15).

Hendrik Miiller, Aaron Sedley, and Elizabeth Ferrall-Nunge. 2014. Survey research
in HCL. Ways of Knowing in HCI (2014), 229-266.

Rima-Maria Rahal and Susann Fiedler. 2019. Understanding cognitive and affec-
tive mechanisms in social psychology through eye-tracking. Journal of Experi-
mental Social Psychology 85 (2019), 103842.

Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving Automated Source Code Summarization via an Eye-
Tracking Study of Programmers. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014).

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2020. VITALSE: Visu-
alizing Eye Tracking and Biometric Data. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
Martin Schréer and Rainer Koschke. 2021. Recording, Visualising and Understand-
ing Developer Programming Behaviour. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER).

Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Miiller,
Michael Falcone, and Bonita Sharif. 2015. ITrace: Enabling Eye Tracking on
Software Artifacts within the IDE to Support Software Engineering Tasks. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

[21

[22

[23

[24

[25

[26

[27

ICSE-Companion 24, April 14-20, 2024, Lisbon, Portugal

Zohreh Sharafi, Ian Bertram, Michael Flanagan, and Westley Weimer. 2022. Eyes
on Code: A Study on Developers’ Code Navigation Strategies. IEEE Transactions
on Software Engineering (2022).

Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaél Guéhéneuc. 2015.
Eye-tracking metrics in software engineering. In 2015 Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 96-103.

Zohreh Sharafi, Bonita Sharif, Yann-Gaél Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha Crosby. 2020. A practical guide on conducting eye tracking
studies in software engineering. Empirical Software Engineering 25 (2020), 3128—
3174.

Vasileios Skaramagkas, Giorgos Giannakakis, Emmanouil Ktistakis, Dimitris
Manousos, Ioannis Karatzanis, Nikolaos S Tachos, Evanthia Tripoliti, Kostas
Marias, Dimitrios I Fotiadis, and Manolis Tsiknakis. 2021. Review of eye tracking
metrics involved in emotional and cognitive processes. IEEE Reviews in Biomedical
Engineering 16 (2021), 260-277.

Ningzhi Tang, Meng Chen, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMil-
lan, and Toby Jia-Jun Li. 2023. An Empirical Study of Developer Behaviors for
Validating and Repairing AI-Generated Code. Plateau Workshop.

Akihiro Yamamori, Anders Mikael Hagward, and Takashi Kobayashi. 2017. Can
Developers’ Interaction Data Improve Change Recommendation?. In 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC).
YoungSeok Yoon and Brad A. Myers. 2011. Capturing and Analyzing Low-Level
Events from the Code Editor. In Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and Tools.

https://doi.org/10.1109/VISSOFT51673.2020.00009

	Abstract
	1 Introduction
	2 Overview
	2.1 Configuration
	2.2 Trackers

	3 Implementation
	3.1 IDE Tracker
	3.2 Eye Tracker
	3.3 Screen Recorder
	3.4 Real-time Data API
	3.5 Support for Multiple IDEs and Languages

	4 Use Cases
	4.1 Understanding Developer Behavior and Cognition
	4.2 Context-aware Programming Support

	5 Limitation and Future Work
	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

